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The degree of approximation of a function f€ C,, by the T-means of its Fourier
series is examined. The corresponding result for the conjugate function 7 is also
obtained. It is shown that our results are the best possible for the class H®.
A number of interesting special cases are studied. € 1990 Academic Press, Inc.

Let T=(t,,)i,_obea summability matrix with the properties

LS ties,  k=0,1,..n=01 . (1)
Y ot=1,  n=012, . (2)
k=0

lim 1,,=0. 3)

We shall establish the exact order of approximation of the 7-means of
Fourier series. Note that (2) is just a normalization and (3) is needed for
the regularity of the matrix 7. The crucial property in our investigations
will be the decreasing character of the rows of T, i.e., the property (1).
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APPROXIMATION OF CONTINUOUS FUNCTIONS
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Let feC,, have Fourier series f{x}~ay/ 2437, {a.cose
b, sin vx). T-means of Fourier series of f are defined as
i : Z nkski ,= x/* :é\

where s5,(f. x} denotes the kth partial sum of the Fourier series of 7
Farthermore let

1 n
£ 4. RS
grl(/ ) , I *Sf’c‘\./fa Xj
1+ n=0
be the Fejér sum of f. Since
m
T, (fixy=Hm ) 1,,5(f %)
mo— o k~—0
rr— 4 Y
= fim Y (fae—tarr NE+ 1) 0 f X) + 1, lm+ 1) 0,04 0,
" — X ’\k:() ° Jl
{5

g {f. x)— f{x) uniformly as k — oc and by (1) and (2}, {m+1}7,,—C as
m — oo, we conclude that (4) is a correct definition, and by {
uniformly as # — o,

Since ¢ ,’s are positive operators, the above omputat;on shows that 7s
are positive convolution operators and hence (see [ 1, Theorem 2.4]} m:}
are saturated with the saturation order {r,,} and we have actually

T, f—f=0(f: /1no)

where w(f, 9) denotes the modulus of continuity of f. However, as will |
seen below, this is a rather weak estimate, and much better ones can &
obtained if we look upon T, as a summability method.

THEOREM !.  Suppose T satisfies (11(3). Then

x , i \
T, [~ /1<C0 Yt fi —)
Panpy " k+1
and
- 1 < [ SN W)
\7.7-71<C, {!now*(l)‘f‘ Y x| k1)@ ; ;—KC)*E:T:E 17
. k=1 \ \k+ 1) \k//}
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where

fo(u)

0)*(t)=J

du,

o U

and w is an arbirrary majorant of w(f;-).

Let @ be a modulus of continuity and H® = { f/w(f, 1) = O(w(r))}. The
necessary and sufficient condition that for every fe H® its trigonometric
conjugate function f be bounded is that

a1
. @) 4 < oo (9)
Vo U

Now we show that in the class H® the estimates given by Theorem 1 are
in general the best possible.

THEOREM 2. Let w be an arbitrary modulus of continuity. Then there are
Sfunctions f,, f,€ H® such that

= 1
T, fol0) = /o0 = 3 1, C——) (10)
fo fo ZO i k1

k=

and

T, 71(0) = J1(0)} > 1, 00*(1)

& el (o ()

As a consequence of Theorem 1 we get

COROLLARY. Under the assumptions of Theorem 1 we have

ﬂf—f=0<w<ﬂuobg;)> (12)
and

T, ~F=0(@*(f; t,.0))- (13)

Since for large n, t,,log(l/1,,) is much smaller than V/?.O’ (12) is a
better estimate than (6). Furthermore for T, =06, and felip 1, (12) yields

a,,f—f=0(10g ”> (14)

n
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and since in this case (7, o= 1/(n+ 1)) for the Lip | function

o X coskxy
fo)=3% —&
n=1

we have lg, f(0) — f(0)| > {(log n)/n), the logarithmic term can be neither
omitted in {12) nor can it be replaced by a smaller gquantity. Note,
however, that in (13) there is no logarithmic factor. Finally, we remark
that {13} is the sharpest possible estimate in most cases.

Remarks. 1. From the proof below it wiil foliow that the better

estimate

,Tn./f_./'ffsco Z fn,kEn‘

where E,(f) denotes the best approximation of f by trigonometric polync-
mials of order at most &, is stiil true.

2. Summability methods with a continuous parameter can be
similarly treated.

3. The right-hand side of (8) obviously can be increased to have the
estimate

f fl CZ trzkc‘) i

L, )

but this is a considerably weaker estimate than (8), e.g. (8) yields that
felip ! implies

!nf~ﬂ=0u_

in particular ¢, f — f=0(n
After the proofs we will give concrete applications of Theorems 1 and 2.

Proof of Theorem 1. 1t is well known (see [2]) that if £,(f}) denotes
the best approximation of f by trigonometric polynomials of order at most
k, then

1 2k
— Y Isf)—SI<SCELS).
k v=k+1
hence
) C j ) \
|‘r}-i!.,f_f! < — E()(f + Z 2 EZ i L]}
n+1 yien "
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By computation similar to that in (5) we have

!Tnf—f|=!‘z (i tres) 3 (s =1)]

k=0 c=0 |

This and Jackson’s theorem yield (7). Equation (8) follows similarly if we
note that by [5, Theorem 2]

Liin+1) o
o J-Ti<c| e

~0 u

1
du < Co* (
n

 n=0,12,..
+1)’ "

Proof of Theorem 2. Without loss of generality we may assume that o
is concave, since for every modulus of continuity « there is a concave
modulus of continuity @ with the property

() <®(8)<2w(8))  (see [3, p.457).

Consider the function

Solx)= éc:l (m (%) - (ﬁ)) COS UX.

It was proved in [4, Lemma 4] that fye H”. But f4(0)—s.(f5,0)=
2 et (1) —o(1/(v+1)))=w(l/(k+ 1)) and thus (10) is true.
In a similar manner, since

FO)=T, 7O = Y (tus—turs 1)k + DT — 0, JO)),

to prove (11) it is enough to verify that for some function f, e H*

~lilk+ 1) a)(u)

]1(0)—0,(71(0)26"'0 ——du,  k=012... (15)

If w(8) < k9, then let f,(x)=sin x. For this (0)—o, f(0)>1/(n+ 1) can
be readily seen.
If () # O(3), then by the concavity of w, actually lim;_,, (w(8)/d) = =
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holds. In this case it was shown in [5, Theorsm 27 that with appropriate
constant B the function

. x /[ 1\ k—
Sitx)y=smx— Dy
1) /Z::z(\ (k/ i
—-B ) {2kw(i\¥~(k——i‘,a,
F=2 \ \k/l
/ \
—{k+1)ow Kk_lﬁ)) sin kx

belongs to the class H and satisfies (15).
{~4

Proof of the Corollary. Applying the inequality

LN (M (1
1 k<M (16)
\ir1)s (\<k+l>+ )‘“‘M) ’

in {7} we have

i\
.!Tr'./f |<C + nlc"‘"<', ;
i Z ) ) )

k=Ma+1

\k =

M 1M A ~ ‘i\
sCZ tn/\(k%_i—t_}‘!w(]')&;

= i \ £

.

Setting
1
e[ — LT
tn,O log‘\ 1 tn.(}},i

we get (12).
Now coming to the proof of (13) we know there is a concave modulu
of continuity @ such that

o(f, 8) < (8) < 2w(f, §)
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hence the analogue of (16) holds in the form

o (s3)eor ()<t (3

2M 1
w* (f,

g —_
k M

), k<M

(note that together with @, @* is also concave) and hence (8) yields

T, 77| < C(t.n_oa)*(l)+ i (thx—1—tni) koo™ (%))

k=1

i il 2M /1
<C (tn_021w(l)* <A—l> + z (l‘,,‘kAI —t,,_k) —E— kw* (ﬁ>

k=1

£y (t,,_kx—tn.k)k‘*’*(}tl?\))

k=M+1 /

1
< C(Mt, o+ Mt, o+ Mt, 4+ 1) 0* (X/[—)

N

and for M =[1/r,,] we get (13).

ExAMPLES

Below we give examples for Theorems 1 and 2. To make our discussion
shorter we write

T.(H®)~7,
to indicate that for each fe H® we have
1T, f—=fl=0(,), n=1,2,..
and there are an f'e H® and x, such that
| T, f(x0)— f(xo)l = Cy,, n=1,2, ...

Some of the “asymptotics” below are well known, we only mention them
because they are immediate consequences of Theorems 1 and 2.

I. (C,%) means. Let C*={A4*"}/4*|0<k<n, n=0,1,..}." These

! A7 are the binomial coefficients.
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satisfy (1)~(3) for =1 and from Theorems 1 and 2 we get by simpie
computation

L= a):’u}
CHH)=—| == du.
P
HYyn H

2. An example with continuous parameter is that of

t of Abei means. Let
A4,={{1-rr 0<r<1,k=0,1,.}. For this we have
. o) ,
A(HCY~ (1 —¥F) — du, !
Y1y U7
3. Riesz means. Let A= /j(n) be a concave sequence tending to = and
iet

e
roo A DR)
L

3
S , 0...m—lr=12 .}
Here we may assume that the function A(x) is defined for all x>0 and that
it is concave. Then
. _ | S A
RAHH®) =~ ;/.’(z)w(—‘;afz.
A(n) 41 \¢/
4. For convex /, the Norlund means
o \
L fin—k)—in—k—-1 . ]
Fv‘:% { ) . ( },K=O,...,n~z,ﬂzi.2,,..}
¢ An) )
satisfy
. 1 "/‘_!A\‘ .
NHH®)=— j An—tyw{~-{ds.
Ap V1 \é¢/
5.

The L-method is defined by

1 x In
flXy=——
Ll‘f\x) lOg( 1//(1 —l")) kgi k

This method does not satisfy condition (1) bu
it satisfies with

silf x).

&

¢ it “almost” satisfies it

it, LE..
k
r

T K Tog(1/(1— 1))

’
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the inequality ¢, . >1¢, ;. k=1, 2, .... (Note that in (1) we would need the
same inequality for k=0, as well.)

Theorems 1 and 2 can be applied in such cases as well by a simple
modification. Let

1 so( f, x)
* _ .
L1 ==y (- gt 2o
Then for L} we have (1)—(3), hence Theorem 1 is true for it,
|L*f—f|<C——1——(w(1)+i ﬁw(—l—» (17)
g = log(1/(1—r)) Sk T \k+1) )

and this obviously implies the same estimate for L,. Now (17) with L,
instead of L} casily implies that

1 [" olu)

du.
Tlog(/A—m i, w

L,(H?)

Note that all the Lip %, « >0, spaces have the optimal order of approxima-
tion {(log(1/(1—r))) '}
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