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The degree of approximation of a function f E C2" by the T-means of its Fourier
series is examined. The corresponding result for the conjugate function I is also
obtained. It is shown that our results are the best possible for the class H"'.
A number of interesting special cases are studied. ,.r 1990 Academic Press, Inc.

Let T= (tll,k)fn~o be a summability matrix with the properties

L (n,k = 1,
k~O

lim t n .O = O.
n~x

k = 0, 1, ..., n = 0, 1, ... ;

n = 0,1,2, ... ;

(1)

(2)

(3)

We shall establish the exact order of approximation of the T-means of
Fourier series. Note that (2) is just a normalization and (3) is needed for
the regularity of the matrix T. The crucial property in our investigations
will be the decreasing character of the rows of T, i.e., the property (1).
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Let fEe 2" have Fourier senes f(x) ~ ao/2 + 2::~ I (a" cos r.\" +
h" sin t'x). T-means of Fourier series of f are defined as

xc

Ti/(j,x)= I tn,kSk(fX),
k~O

(4 }

where ski! x) denotes the kth partial sum of the Fourier series of f
Furthermore let

be the Fejer sum of f Since

m

Ti/(f, x) = lim I tn,kSk{! x)
In-X k=O

rm-l

= lim ) " (t - t )\' k -l- 1) rr (' r y \ -'- • I " ..;.. 1 \ , [1' y \ i
... .I. ') L n,k n,k+l I l uk'J,-,~J i ~!l,m\'·& ! ~,t(Jn\J'·"J('

111-+ X lk=O ;

(5 J

(jkef x) --> f(x) uniformly as k --> x and by (1) and (2), (m + 1) t"m --> 0 a~

m --> x, we conclude that (4) is a correct definition, and by (3), Til f --> f
uniformly as n --> CA;.

Since Uk'S are positive operators, the above computation shows that T,,'s
are positive convolution operators and hence (see [1, Theorem 2.4J) they
are saturated with the saturation order {tn,o} and we have actually

T,.1 - f= O(w{f, vitn,o)), (6\

where w(/, b) denotes the modulus of continuity of f However, as wili be
seen below, this is a rather weak estimate, and much better ones can be
obtained if we look upon Tn as a summability method.

THEOREM 1. Suppose T satisfies (1)-(3). Then

and

iTi/J-II~Cl ~ti/,ow*(l)+ f t n,k((k+l)w*
l k~ 1 \

, \ 11\ ')
_1_ \ _ kw* I _ \ ~
k+l)' \k) j'

(8)
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where

MAZHAR AND TOTIK

-( OJ(U)
W*(t) = j -- du,

o u

and OJ is an arbitrary majorant of OJ(f; . ).

Let OJ be a modulus of continuity and H W = {J/OJ(f, t)=O(w(t))}. The
necessary and sufficient condition that for every f EH W its trigonometric
conjugate function J be bounded is that

.1 w(u)I -- du < Ct:).
-0 U

(9)

Now we show that in the class H W the estimates given by Theorem 1 are
in general the best possible.

THEOREM 2. Let OJ be an arbitrary modulus of continuity. Then there are
functions fo, 11 E H W such that

(10)

and

IT,Jl (0) - Jl (0)1 ;?: t" ow*(1)

+k~/"'k((k+I)W*C~1)-kw*G))' (11)

As a consequence of Theorem 1 we get

COROLLARY. Under the assumptions of Theorem 1 we hat:e

and

T"J - J= O(w*(f, t".o))·

(12)

(13 )

(14 )

Since for large n, t",o log(1/t",o) is much smaller than ...;It,,.O' (12) is a
better estimate than (6). Furthermore for T"=(J,, and fElip 1, (12) yields

(J,,/ - f= 0 co;n)
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and since in this case (tn.O = l/(n + 1)) for the Lip 1 function

f(' ; cos kx
} x)= I --.-

117:: 1 kL

177

we have !!T,J(O) - f(O)I? ~((1og n),/n), the logarithmic term can be neither
omitted in (12) nor can it be replaced by a smaller quantity. Note,
however, that in (13) there is no logarithmic factor. Finally. we remark
that (13) is the sharpest· possible estimate in most cases.

Remarks. 1. From the proof below it will faHow that the better
estimate

:J:

IT,J-fl~Co L
k "°0

where Ek(f) denotes the best approximation of f by trigonometric polyno
mials of order at most k, is stiil true.

2. Summability methods with a continuous parameter can be
similarly treated.

3. The right-hand side of (8) obviously can b~~ increased to have the
estimate

but this is a considerably weaker estimate than (8), e,g., (8) yields that
f E Lip 1 implies

!T,,J -.1\ = O( t".o),

in particular !T"l- ] = O(n -l).

After the proofs we will give concrete applications of Theorems 1 and 2.

Proof of Theorem 1. It is well known (see [2]) that if Ek(f) denotes
the best approximation of f by trigonometric polynomials of order at most
k, then

2k

hence
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By computation similar to that in (5) we have

x k

~ L (tn,k - In,k+ de L E"(f)
k~O "=0

co

= C I In.kEk(f)·
k~O

This and Jackson's theorem yield (7). Equation (8) follows similarly if we
note that by [5, Theorem 2J

r
l,(n+l) w(u) ( 1 )

IUnl-ll~C --du~Cw* --,
'0 u n + 1

n = 0, 1,2, .. ',

Proof of Theorem 2, Without loss of generality we may assume that w
is concave, since for every modulus of continuity w there is a concave
modulus of continuity wwith the property

w(b) ~ w( (j) ~ 2(w( b»

Consider the function

(see [3, p.45J).

It was proved in [4, Lemma 4] that fo E H W
• But fo(O) - Sk(fO, 0) =

L;:~k+1 (w(I/F)-w(Ij(v+ I»)=w(I/(k+ 1» and thus (10) is true.
In a similar manner, since

x

l(O)-T,](O)= L (tn,k-tn,k+I)(k+I)(l(O)-ukl(O»,
k~O

to prove (11) it is enough to verify that for some function fl E HUt

k=O 1, 2, .... (15)

Ifw({j)~k{j, then letfl(x)=sinx. For thisl(O)-unl(O)~Ij(n+ 1) can
be readily seen.

If w( (j) "# O((j), then by the concavity of w, actually lim" _ 0 + (w( (j )jb) = x;
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holds. In this case it was shown in [5, Theorem 2J that with appropriate
constant B the function

c,.. :c / (1\ k-l I 1 \\ . ,
jl!x)=smx- L (w :-1--.- w l-,-I)! smKX

k~2\ \k} k \f':-~//

( 1 \ \
- (k + 1 ) w 1-- I) sin kx\ ' \k + I} ,

belongs to the class H'" and satisfies (15).

Proof of the Corollary. Applying the inequality

/ 1 \ /( M) \ (1 \
w!--)::(( -- +llw i -j.

\k+l/ \ k+l j \M/

in (7) we have

...L Cw (;" ~ \,. , }vI)

I .'IJ 1 \ / 1\

(
• \" I.!'f"::( C 1+ In.oM L. -,-,-, ) W J' ~1)

k = 0 it + 1 / \ Iv;

I 1 \
::( C(l + tn oMlog M) OJ If ~-;f I·

, \ 1'_ /

Setting

[
1 1

M= . , I
t".o 10g(Ltll.o)-.l

(16 )

we get (12).
Now coming to the proof of (13) we know there is a concave modulus

of continuity w such that

w(j; fJ) ~ 61(15)::( 2w(I, J)
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hence the analogue of (16) holds in the form

k,,:;M

(note that together with W, w* is also concave) and hence (8) yields

and for M = [1/tn•o] we get (13).

EXAMPLES

Below we give examples for Theorems 1 and 2. To make our discussion
shorter we write

to indicate that for each IE H W we have

ITnl - II = 0(7,,),

and there are an IE H W and Xo such that

n= 1, 2, ...

n= 1, 2, ....

Some of the "asymptotics" below are well known, we only mention them
because they are immediate consequences of Theorems 1 and 2.

1. (C, 1:) means. Let C~= {A~=UA~ I O,,:;k":;n, n=O, 1, ... }.! These

1 A %are the binomial coefficients.
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satisfy (i H 3) for 'Y. ~ 1 and from Theorems 1 and 2 we get by simple
computation

1 (.;r w(u) ,
C~(HW) x- i -,- au.

n J Ln ut..

2. An example with continuous parameter is that of Abd means, Let
A, = {( 1 - r) r k

, 0 < r < 1, k = 0, 1, ... }. For this we have

I
w(u)

A,(H'")-(l-r) -0 du,
"1-1 lr

r -+ 1 - O.

3. Riesz means. Let ;. = ;.(n) be a concave sequence tending to x and
let

, rj.(k+ll-i.(k) . 1
R" - ) . k - 0 n - j I" -, J ,- '\ ~, ,-:", ... , •• 1.~ .. - ..L~ "-~ ... (.

l I.(n) j

Here we may assume that the function i.( x) is defined for ali x ~ 0 and that
it is concave. Then

1 .-" . ( 1\
R~(HW) x-.- I i.'(t) OJ \ -] dt.

1'.(n)·;1 \t)

4. for convex i., the Nor/und means

,,;. i(i,(n-k)-i.(n-k-l) , _'.',.- - -,.-.)
.Y - l )(n) , K-O, ...,n L tl-l,_, ...

satisfy

1-/1 . /1 \
N~(HW)x~ J ;.'(n-t)w(~ldt.

An ! \tf

5. The L-method is defined by

1 Y; r k
, •

L fl x) = '\ -, I r Xi
r ," 1 (1 /(1-)\ L I ~k\J";'og! r J k~ 1 i\

This method does not satisfy condition (1) but it "almost" satisfies it, i.e.,
it satisfies with

kr
t'k=kl (1"1 )', og it -1',)
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the inequality (r,k ~ (r.k + 1, k = 1, 2, '" . (Note that in (1) we would need the
same inequality for k = 0, as well.)

Theorems I and 2 can be applied in such cases as well by a simple
modification. Let

* _ 1 (. soU, x) )
Lr!(x)-l+log(l!(l_r)) Lr!(x)+log(l!(I_r))'

Then for L: we have (1 )-(3), hence Theorem 1 is true for it,

(17)

and this obviously implies the same estimate for L r • Now (17) with L r

instead of L: easily implies that

1 f" w(u)LAHW
) x , . -- duo

log( I! (1 - r)) • 1 - r U

Note that all the Lip ~, !Y. > 0, spaces have the optimal order of approxima
tion {(1og(1!(1 - r))) - 1 }.
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